
1

Get Started MicroPython with ESP32
Version V2.2
Date 2021/04/22
By Gray

Introduction
Makerfabs MakePython ESP32 Kit intended to help beginners starting MicroPython with the ESP32. This

Kits includes some common electronic components and modules, for the beginners to learn the basic

knowledge of MicroPython, include hardware and programming.

There totally 12 basic lessons help starters to learn the usage and programming skills, and the total

learning time for this kits& lessons is about 20 hours.

What is MicroPython

Python is one of the most widely use simple and easy-to-learn programming languages around.

Previously, Python is mainly for software programming on PC. MicroPython is a lean implementation of

the Python 3 programming language that has been pared down to run efficiently on microcontrollers. It is

a relatively simple but powerful that is easy for beginners to pick up, and has been gaining popularity in

schools as an introductory language. MicroPython has nearly all of the features of Python, which means

that interacting with hardware now is easily accessible to beginners and seasoned Python programmers

alike.

MicroPython goal is to make programming digital electronic as simple as possible, it can be used by

anyone. Currently, MicroPython is used by hobbyists, researchers, teachers, educators, and even in

commercial products.

https://www.sparkfun.com/python

2

Product List

3

MakePython ESP32 Pin figure

MakePython ESP32 is designed by Makerfabs, Shenzhen, in 2019. It is based on ESP32 module and

128*64 OLED, it features:

 Wi-Fi Protocols: 802.11b/g/n(802.11n up to 150Mbps),A-MPDU and A-MSDU aggregation and

0.4us guard interval support

 Wi-Fi Frequency range: 2.402GHz - 2.483Ghz

 CPU: Two low-power Xtensa® 32-bit LX6, ESP32-D0WDQ6

 CPU clock frequency: 80MHz to 240MHz

 expandable interface

 On-chip sensor: Hall sensor

 On-chip Internal RAM: 520KB

 Integrated crystal: 40MHz crystal

 Integrated SPI flash: 4MB

 Power supply: 5V, integrate 5V-to-3.3V LDO

 Operating current: Average 80 mA

 Minimum current delivered by power supply: 500 mA

 OLED: 1.3inch SSD1306/SSD1315

 Recommended operation temperature range: --40℃ ~ +85℃

 Board size: 70*32.6mm

 Moisture sensitivity level (MSL): Level 3

4

CONTENT
Introduction...1

What is MicroPython.. 1
Product List..2
MakePython ESP32 Pin figure...3

CONTENT...4
MicroPython Development Tool...5

Installing uPyCraft IDE...5
Get Start with uPyCraft IDE...6
Establishing a communication with the board...7
Creating new file on your board... 9
Uploading first program: Blinking LED..10

MakePython Lessons...12
Lesson1: LED Control... 12
Lesson2: Running LED..15
Lesson3: Button... 17
Lesson4: PWM Control.. 19
Lesson5: Voice Control...23
Lesson6: OLED Display... 26
Lesson7: Temperature Monitor DS18B20..28
Lesson8: Digital LED WS2812...31
Lesson9: ADC..33
Lesson10: Pulse Sensor..36
Lesson11: Ultrasonic Ranging..38
Lesson12: WiFi... 41

A. WiFi connection.. 41
B. WebREPL... 43
C. Socket communication..46

About us.. 50

5

MicroPython Development Tool
There many programming tools with MicroPython, such as Adafruit MicroPython tool (ampy), pyccham,

most of them are identical. For this tutorial, uPyCraft IDE is recommended which is relatively easy for

starters.

Installing uPyCraft IDE

 Click the link to download uPyCraft IDE for Windows:

https://randomnerdtutorials.com/uPyCraftWindows.

 After download the install package, you would see a similar file (uPyCraft_VX.exe) in the Downloads

folder

 Double-click the downloaded file to start the uPyCraft IDE:

https://randomnerdtutorials.com/uPyCraftWindows

6

Get Start with uPyCraft IDE

Open uPyCraft IDE, take a look at each section of uPyCraft IDE:

 1->Folder and files

 2->Editor

 3->MicroPython Shell/Terminal

 4->Tools

1. Folder and files
This section lists several folders. Click the device folder and it will list all of the files which are currently

stored on your MakePython ESP32 board. If connected MakePython ESP32 to uPyCraft IDE via serial,

all files stored should load and shown at the folder. By default, the board has only one boot.py file when it

has not downloaded any files yet. To be able to run the program normally, it is recommended to create a

main.py file for programming.

device folder:
 boot.py: Runs firstly for setting up configuration options when the device starts up;
 main.py: This is the main script that contains your code. It is executed immediately after the

boot.py.

A. sd folder is meant to access files stored on SD cards this is only works with boards like the PyBoard

that come with an SD card slot.

B. uPy_lib lists the library files which built-in the IDE.

C.workspace is one file directory that defines a path for storing the program files on the PC.

When using uPyCraft for the first time, it necessary to define your working directory. Click the

workspace folder, a new window pops up, and you can choose the workspace path which to create a

new folder or select an existing folder to be your working directory.

*Note: how to change the directory of workspace, go to Tools >InitConfig for initializing the config

and click the workspace again to choose a different path.

7

2. Editor
The Editor section is where you edit your codes. You can open more than one file, and the Editor will

open a new tab for each file.

3. MicroPython Shell/terminal
On the MicroPython Shell, you can type some code to execute immediately by MakePython ESP32

without loading files. The terminal also prompts some information about the state of executing, and

shows the errors related about upload, syntax errors, prints messages, etc…

4. Tools
The icons for quick tasks. Each button is labeled in the below figure:

 New file: creates a new file on the Editor;

 Open file: open a file from your computer;

 Save file: saves a file;
 Download and run: upload the code to your board and execute the code;
 Stop: stop the execution of the code – it’s the same as entering CRTL+C on the Shell to stop all

scripts from running;

 Connect/Disconnect: connect or disconnect to your board via Serial. You must select the serial

port first in Tools > Serial;

 Undo: undo last change in the code Editor;
 Redo: redo last change in the code Editor;
 Syntax check: checks the syntax of your code;
 Clear: clear the Shell/terminal window messages.

Establishing a communication with the board

After unpacking the MakePython ESP32, connect it to the PC with a Micro USB cable.

8

Open uPyCraft IDE and follow the steps:

A. Go to Tools > Board and select esp32.

B. Go to Tools > Serial and select the port your MakePython ESP32 connected (the like for
downloading the USB driver is:

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers)

C. Press the Connect button to establish a serial communication with your board.

D. You will see “>>>” appear in the Shell window after connecting successfully. Type the print

command to check the connection.

>>>print(3+2)

Then the MakePython board calculates and feedback the result:

E. Makerfabs MakePython is programmed with MicroPython before the shipping. But If your

MakePython has been re-programmed for some other firmware, you have to re-load the

Micropython firmware to the board until the connection is success.

Download the MicroPython firmware for MakePython ESP32 from here ：

https://micropython.org/resources/firmware/esp32-idf3-20191220-v1.12.bin. Go to

Tools>BurnFirmware, select the parameter as the following picture. Then click OK and wait a

minute for the firmware loading.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://micropython.org/resources/firmware/esp32-idf3-20191220-v1.12.bin

9

Creating new file on your board

A. Press the “New file” button to create a new file.

B. Press the “Save file” button to save the file in your computer.

C. In the pop-up window, name your file whatever not main.py and save it:

D. You would see as following in the uPyCraft IDE:

E. Click the “DownloadAndRun” button to load the file to MakePython ESP32.

F. The abc.py (although it is empty now) has been stored on the board. The device directory will list

the abc.py file. If you want the board to execute the file automatically after power again, right-click

and set it to Default Run. The uPyCraft IDE would createmain.py file to the board, which is the key
for the file running automatically.

10

Uploading first program: Blinking LED
Let’s try to upload the file coding for LED blink script into MakePython ESP32 board.

A. Create a new file, Copy the following code to the file:

import time

from machine import Pin

led=Pin(5,Pin.OUT)

try:

while True:

led.value(1)

time.sleep(0.5)

led.value(0)

time.sleep(0.5)

except KeyboardInterrupt:

pass

B. Click the “Save” button to save and name it as “LED.py”, then the file will be stored at the

workspace directory.

C. Press the “Stop” button to stop any script running in the board.

D. Click “DownloadAndRun” to upload the file to MakePython ESP32.

E. You will see “download ok” printing in the Shell window, it means the update succeed. The file would

be run when it loaded successfully.

11

F. To running the script again, you can right-click the file and select “Run” , the file will be executed

again.

If you want to run the program on power, the file should be set to Default Run.

* Note: It is suggested to delete un-necessary files when much files have been in the board. Right click the file and select the

“delete” to delete.

12

MakePython Lessons
Lesson1: LED Control

This is the basic lesson, in which we will learn how to control the pin of MakePython ESP32 to output with

MicroPython.

Material
A. 1*LED;

B. Resistor: 1*330R;

C. Jump wires;

Instructions
The short pin on the left of the LED is negative and the long pin on the right is positive. The purpose of

the resistor is to limit the current for avoiding LED lamp burning with too much current.

Wiring

Create a file

Open the uPyCraft IDE, and click “New” to create a new python file. After programming, click

“Save” to save. During the saving you have to name it as “LED.py”.

Programming

13

import time #use the time class

from machine import Pin #use the machine.Pin class

led=Pin(5,Pin.OUT) #create LED object from pin5,Set Pin5 to output

try:

while True: #repeat the following code

led.value(1) #turn off (Set high level)

time.sleep(0.5) #waiting for 0.5 seconds

led.value(0) #turn on (Set low level)

time.sleep(0.5) #waiting for 0.5 seconds

except KeyboardInterrupt:

pass

Grammar explanation

 led=Pin(5,Pin.OUT)

Create an LED object and set it to output mode.

 from machine import Pin

import the Pin class from the machine library.

 while True

Used to execute a program in loop under certain conditions.

 led.value(1)

Set the led pin value to high level. There is no voltage difference between the two pins which both

are connected to high level, that the LED is off.

 led.value(0)

Set the pin value to low level.

 time.sleep(0.5)

Delay 0.5 seconds, during the time the MCU will be sleep and do nothing.
Note: Indentation refers to the spaces at the beginning of a code line. the indentation in Python is very important.

Python uses indentation to indicate a block of code.

Experimental result

14

Click “DownloadAndRun” to download the Python file to MakePython ESP32 and run. You will see

the LED blink with interval of 0.5 seconds.

The pin connection of the LED can be changed at your wishes. For example, if modify the code to

led=Pin(4,Pin.OUT) and change the wiring of the LED negative to IO4, the light will flash. Similarly, if

change the code to time.sleep(1), the light will flash with interval of 1s.
Set the LED.py to Default Run, and the program will run automatically when the MakePython ESP32

power on.

Extension
With MicroPython, you can control the LED light on/off by sending command through serial port without

loading the files into MakePython board.

Click “Stop” and input the following command into the shell.

*Note: If the lights are still flashing, that means the code is still running, press to stop the program running. Write

the code after ">>>" and press enter after each line:

Command
>>>from machine import Pin #Press enter to jump the cursor to the next line

>>>led=Pin(5,Pin.OUT)

>>>led.value(1) #Press enter, led will be 0ff

>>>led.value(0) #Press enter, led will be on

* Each time you finish writing the code, you need to press enter and move the cursor to the next line.

With this method, you can directly control the MakePython ESP32 board hardware directly with

commands.

15

Lesson2: Running LED

In this lesson, we will control multiple LED for understanding the port, compilation environment and

program framework deeply.

Material
 4*LEDs;

 resistance: 4*330R;

 Jump wires;

Schematic

Wiring
Connect the short LED pin to the MakePython ESP32 GPIO ports (IO15, IO14, IO13 and IO12). Connect

the long pin to 3.3V. A 330R resistor must be connected in serial between the LED and 3.3V.

16

Programming
Create a new file and add the following code. Then save it and name “Running_LED.py”.

from machine import Pin

import time

#Create an array of Pin15,Pin14,Pin13,Pin12 leds

leds = [Pin(15,Pin.OUT),Pin(14,Pin.OUT),Pin(13,Pin.OUT),Pin(12,Pin.OUT)]

n=0

try:

while True:

n = (n+1)%4 #The remainder sign % guarantees that n is between 0 and 3

leds[n].value(1) #The value of the NTH LED is high level,turn off

time.sleep_ms(30) #Delay of 30 milliseconds

leds[n].value(0) #The value of the NTH LED is low level,turn on

time.sleep_ms(30) #Delay of 30 milliseconds

except KeyboardInterrupt:

pass

Grammar
 leds = [Pin(15,Pin.OUT),Pin(14,Pin.OUT),Pin(13,Pin.OUT),Pin(12,Pin.OUT)]

Create an object for each LED lamp and control them separately.

 n = (n+1)%4

Get the value of the next n after each loop execution (the residual symbol % ensures that the value

of n is between 0 and 3).

 led.value()

1 for high level, 0 for low leve

Experimental result
After loading and running the code, you will see four LED lights on and off in cycles. Set the

17

Running_LED.py to Default Run, and the program will run automatically when the MakePython ESP32

power on.

Lesson3: Button

In the lesson, you will learn the usage of GPIO input, the MakePython board check the status of the

button connected, and to control the LED light on/off.

Material
 1*Button Module

 1* LED

 resistance:1*330R

 Jump wires

Instructions
The button module has three pins—VCC, OUT and GND. When the button is pressed, OUT will be

connected to VCC that OUT level is high; when the button is released, OUT will be connected to GND

that OUT level is low.

Wiring
Wiring LED is the same as the Lesson1. Connect the long lead of LED to 3V3 via a resistance, and

connect the short to the Pin IO5. As the introduction, VCC of the button module is connected to the 3V3,

OUT is connected to the Pin IO12, GND is connect to the GND of the MakePython ESP32. Your finished

circuit should be like the blow figure.

18

Programming
Create a new file with the following code, then save and name it “Button.py”.
from machine import Pin

import time

button=Pin(12,Pin.IN, pull=None) #create Button object from pin12

led=Pin(5,Pin.OUT) #create LED object from pin5,Set Pin5 to output

try:

while True:

if(button.value() == 1): #Press the button, the value is 1, release the button, the value is 0

led.value(0) #turn on

else:

led.value(1) #turn off

except KeyboardInterrupt:

pass

Grammar explanation

19

 button=Pin(12, Pin.IN)

Create a button object and set it to input mode.

 if...else…

if statement: If true, execute the statement after the “if”. Otherwise, execute the statement after

the “else”.

Result
Loading the code, and pressing the button, the LED will be on with button pressed, and off with button

released. Set the Button.py to Default Run, and the program will run automatically when the

MakePython ESP32 power on.

Lesson4: PWM Control

Pulse width modulation (PWM) output “square waves”, with different duties depends on the controller.

The pin changes from high to low in one cycle. There are two important parameters: switching frequency

and duty. Duty is defined as the percentage of high-level time in one cycle.

20

This lesson shows how to use the MakePython board to generate a PWM signal, and thus to control LED

brightness and steering gear rotation Angle.

Material
 1*Servomotor

 1*LED

 1*330R

 Breadboard and jump wires

A. Control the LED brightness

Instructions
By adjusting the duty cycle of the PWM, the LED brightness can be adjusted. For example, a PWM cycle

is 100ms, which 33ms high and 67ms is low, and the duty cycle is 33/100=33%.

Wiring
Connect the long lead of LED to 3V3 via a resistance, and connect the short to the Pin IO5. As follows:

Programming
Create a file named “PWM.py” with the following code and comments:
from machine import Pin, PWM

import time

frequency = 5000 #set frequency

led = PWM(Pin(5), frequency) #create PWM object from pin5,Set frequency

try:

21

while True:

for duty_cycle in range(0, 1024): #duty_cycle cycles between 0 and 1024

led.duty(duty_cycle) #duty cycle size of LED lights

time.sleep_ms(2) #delay of 2 ms

except KeyboardInterrupt:

pass

Grammar explanation:
 led = PWM(Pin(5), frequency)

Create the PWM object and set the default frequency.

 range(0,1024)

The range() function crease a list and is used to iterate over a sequence of numbers in a loop.

 for duty_cycle in range(0, 1024)

For statement iterates over the items of any sequence in the order that they appear in the

sequence.

 led.duty()

The larger the duty_cycle value of the led, the brighter the led.

The experimental results:
Loading the code, the LED brightness changes, from full bright to dark by cycle.

B. Control the servo

Servo motor is widely used in robot applications. It is an automatic control system composed of dc motor,

reduction gear, sensor and control circuit, the rotation angle of the output shaft determined by the input

PWM signal.

Instructions
Users control the Servo by sending them a fixed frequency square wave signal (usually 50Hz for analog

servers, but digital ones may also accept up to 300Hz), we use the duty method to set the Angle, calling

the servo.duty () method to change the set servo angle

Wiring
The servo motor has three wires: Orange wire is Signal, Red wire: Power, Brown wire: GND. The orange

line is connected to IO14, the red line is connected to 3.3v, and the brown line is connected to GND.

22

Programming
Create a new Servo_Demo file with the following code and comments:

import machine

import time

p14 = machine.Pin(14)

servo = machine.PWM(p14,freq=50)

try:

for i in range(0, 180):

servo.duty(i)

time.sleep_ms(10)

except KeyboardInterrupt:

pass

Grammar explanation
 servo = machine.PWM(p14,freq=50)

Create the PWM object and set the frequency to 50Hz.

 servo.duty(i)

Adjust the duty cycle.

The experimental results
The servo motor keeps turning.

23

More important
You also can input the commands in the terminal to make the servo rotate to any position you want after

the programming loaded, which is very convenient in robot application debugging:

>>>servo.duty(120)

Then the servo will rotate to the position of 120 degree. You can adjust the position by sending

commands.

Lesson5: Voice Control

This experiment introduces how to do some experiments about sound with the buzzer and sound sensor

module.

A. Experiment for buzzer module

Instructions
According to the driving mode, the buzzer is mainly divided into active buzzer and passive buzzer. Active

buzzer needs the DC voltage, and passive buzzer needs a specific frequency of vibration signal to drive.

To do this experiment requires the active one.

Wiring
The buzzer module has three pins (VCC, I/O, GND). VCC is connected to the 3V3 of the MakePython

24

ESP32, GND is connected to GND, and I/O is connected to IO12:

Programing
Create a Buzzer.py file with following code and comments:
from machine import Pin,PWM

import time

pwm=PWM(Pin(12,Pin.OUT))

def ambulenceSiren(pwm):

pwm.freq(400)

pwm.duty(512)

time.sleep_ms(500)

pwm.freq(800)

time.sleep_ms(500)

try:

while True:

ambulenceSiren(pwm)

except KeyboardInterrupt:

pwm.deinit()

pass

Grammar explanation
 def ambulenceSiren(pwm)

Define a function, beginning with the def keyword, followed by the function identifier name and

parentheses (), within which you can pass arguments and arguments.

 pwm.freq(400)

Set the frequency at 400Hz, different frequencies produce different sounds.

Experimental result
You can hear the sound that likes an ambulance whistle, and you can also modify pwm.freq() to change
sounds.

25

B. Experiment for sound sensor

Instructions
With the sound sensor in the kit, we can make a “sound switch”, that controls an LED On/Off by the

sound. The sound intensity of the surrounding environment can be detected by sound sensor module.

When the sound of the external environment fails to reach the threshold, the pin “OUT” outputs a high

level; when the sound intensity of the environment reaches the threshold, “OUT” outputs a low level. The

blue digital potentiometer on the module can be used to adjust the trigger threshold.

Wiring
VCC is connected to 3V3, GND is grounded, OUT is connected to IO12, and LED is connected to IO5.

Programming
Create a file named Voice, and add following code.
from machine import Pin

import time

voice=Pin(12,Pin.IN)

led=Pin(5,Pin.OUT)

try:

26

while True:

if (voice.value() == 1):

led.value(0)

time.sleep(1)

else :

led.value(1)

except KeyboardInterrupt:

pass

Experimental result
When you clap your hands or snap your fingers, you'll notice that the light will be on for 1 second.

Lesson6: OLED Display

There an on-board OLED 1.3’ OLED module integrated on MakePython board, with 128x64 pixel. One

pixel of a monochrome screen is a light-emitting diode. OLED screens have two versions that support

I2C or SPI communication protocol, and the two versions are completely incompatible due to different

protocols. In the lesson, the OLED is configured to compatible with I2C protocol.

Material
MakePython ESP32:

I2C communication
I2C is widely used for controller communicating with onboard components such as sensors/ displays.

27

Data transmission can be completed by only two signal lines--respectively clock line SCL and signal line

SDA. There is only one Master and several Slave devices on the I2C line. In order to ensure that both

buses are at high level when idle, SDA and SCL must be connected with the pull resistor. The classical

value of the pull resistor is 10K.

The SSD1306 library
The MakePython board cannot simply program the pin to display text on the OLED, and the OLED

screen is driven by the SSD1306 driver chip, so it’ll need the library to drive the SSD1306 for display. The

library can be obtained from the following link, or searched in the Github.

https://www.makerfabs.com/makepython-esp32-starter-kit.html

Load library function
After downloading the file, copy ssd1306.py to the workSpace file directory.

Open the ssd1306.py file by uPycraft IDE and click “DownloadAndRun” button to download and

run, and the library file can be loaded into the board. Create a new ssd1306demo.py file to program. As
shown in figure:

Programming
Create a new file named ssd1306Demo.py , and write the following code into the file.
from machine import Pin,I2C

https://www.makerfabs.com/makepython-esp32-starter-kit.html

28

import ssd1306

i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000) #Init i2c

lcd=ssd1306.SSD1306_I2C(128,64,i2c) #create LCD object,Specify col and row

try:

lcd.text("Makerfabs",30,10) #set "Makerfabs" at (30,10)

lcd.text("time:",30,25) #set "time:" at (30,25)

lcd.text("2019-12-5",30,40) #set "2019-12-5" at (30,40)

lcd.show() #display

except KeyboardInterrupt:

pass

Grammar explanation
 I2C()

Initialize the I2C bus, configure the SCL and SDA pins, and set the frequency at 100000Hz.

 ssd1306.SSD1306_I2C(128,64,i2c)

Use the function in the SSD1306 library to create a LCD object. Then the LCD can be driven by

programing with the library functions.

 lcd.text("Makerfabs",30,10)

“Makerfabs” is the text to display, The Numbers “30”,”10” are the X and Y axes of the screen.

 lcd.show():

Enable the display to show something.

The experimental results
Save and click the “DownloadAndRun” button, and you'll see “Makerfabs/time:/2019-12-5”. You can

modify the text in LCD.text() statement to display.

Lesson7: Temperature Monitor DS18B20

DS18B20 is a low-cost digital temperature sensor. Its measurement range is between -55 ° c and 125 ° c,

with an inherent error of 1 ° c and an accuracy of 0.5 ° c between -10 ° c and 85 ° c, which can meet the

daily temperature measurement needs.

There are two power supply modes: independent power supply and data parasitic power supply. In the

29

parasitic power supply mode, the power line is grounded, and the power is obtained from the data line,

which can save a connection line. DS18B20 uses OneWire (single-wire) communication protocol, which

only needs a signal line to complete the reading and writing of data. Here we show you how to read data

using the OneWire protocol.

Wiring

DS18B20 has three pins: GND; Data (need to connect the pull resistor a 10k resistor to 3.3v); VDD. The

GND pin is connected to GND, VCC pin is connected to 3v3, and the DQ pin is connected to IO12.

Programming
Create a new file named DS18B20Demo with the following code.
* If there is no ssd1306.py file in the device directory, please download ssd1306.py first. Refer to lesson 6

from machine import Pin,I2C

import ssd1306

import time

import machine

import onewire, ds18x20

dat = machine.Pin(12) # the device is on GPIO12

i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000) #Init i2c

lcd=ssd1306.SSD1306_I2C(128,64,i2c) #create LCD object,Specify col and row

30

ds = ds18x20.DS18X20(onewire.OneWire(dat)) # create the onewire object

roms = ds.scan() # scan for devices on the bus

try:

while True:

ds.convert_temp()

time.sleep_ms(750) #The reading temperature needs at least 750ms

for rom in roms:

lcd.fill(0)

lcd.text("temperatures:",10,16)

lcd.text(str(ds.read_temp(rom)),24,40)

lcd.show()

except KeyboardInterrupt:

pass

Grammar explanation
 scan()

Scan for devices on the bus.

 convert_temp()
Start temperature reading. The convert_temp() method must be called each time you want to

sample the temperature.

 read_temp()

Read the collected temperature.

 fill(n)

Empty the screen when n=0, and fill the screen when n is not 0.

The experimental results
After running, the temperature collected appears on the display screen and refreshed every 750ms.

31

Lesson8: Digital LED WS2812

WS2812 is an intelligent control LED light source that the control circuit and RGB chip are integrated in a

package of 5050 components. It is easy to control by one wire. WS2812 can be connected each one by

one into a light strip or light ring. Besides, the color of WS2812 can be set at will which is composed with

the RGB trichromatic lamp.

This experiment will show you how to turn the WS2812 light.

Wiring
VDD is connected to 3.3V/5V, VSS is connected to GND, DIN is connected to IO12 of the board.

Programming
Create a new file named ws2812Demo.py with following code.
import machine, neopixel

import time

32

n = 12 #Define LED quantity

np = neopixel.NeoPixel(machine.Pin(12), n) #Create the NeoPixe object

def demo(np):

Circular effect.One pixel runs through all strip positions, while the others are closed.

for i in range(4 * n):

for j in range(n):

np[j] = (0, 0, 0)

np[i % n] = (255, 255, 255)

np.write()

time.sleep_ms(25)

#Rebound effect and set color (R,G,B), as well as wait time.

#Wait time determines the speed of the bounce effect.

for i in range(4 * n):

for j in range(n):

np[j] = (0, 0, 128)

if (i // n) % 2 == 0:

np[i % n] = (0, 0, 0)

else:

np[n - 1 - (i % n)] = (0, 0, 0)

np.write()

time.sleep_ms(60)

try:

while True:

demo(np)

except KeyboardInterrupt:

pass

Grammar explanation
 np = neopixel.NeoPixel(machine.Pin(12), n)

Create the NeoPixe object, set LED quantity.

 np[i] = (r, g, b)
r,g,b: red, green, and blue color channels are each divided into 256 degrees of brightness, with

values ranging from 0 to 255, with 0 being the darkest and 255 being the brightest.

 ”*”

Multiply - multiply the two Numbers.

 ”%”
Mod - returns the remainder of division.

 “//”
Take the integral part of the divisible - return quotient.

 np.write()

Use the write() method to output the colors to the LED.

33

Experimental result
Running the code, you can see the brightest white light in the loop, followed by the half-bright blue light

bouncing back and forth. You can make colored lights by changing the r,g, and b values of np[i] to get

different colors and brightness.

Lesson9: ADC

ADC is an Analog/Digital Converter that converts Analog signals into Digital. In the previous lessons, you

have learned how to use digital input or output on the MakePython ESP32. A digital input just has two

binary state: logic LOW or logic HIGH. But the analog signal can be anything from completely off to

completely on – a range of possible values. The analog signals are used for anything we met in everyday

life, such as light intensity, sound waves, battery voltages and so on. Analog signal work through a piece

of hardware named Analog/Digital converter. ADC take analog signal and change it to digital one.

MakePython ESP32 have on-board ADCs, it has 18 channels brought out to the GPIO pins. The

channels usually used are GPIO32-GPIO39. When using the ADCs with default configuration, the

voltages level of input pin must be between 0.0v and 1.0v (as long as above 1.0v, the value converted

will be as 4095). Attenuation must be applied in order to increase the range of input voltage level. The

attenuation can be set to 11DB in the code so that the range of input voltage level can be risen to 3.6V.

In this chapter, it will show how to accept the analog signal with the MakePython ESP32.

34

Instructions
Potentiometer is an adjustable resistor with three leading ends and resistance values that can be

adjusted according to a certain variation law. A potentiometer usually consists of a resistor body and a

movable brush. When the brush moves along the resistance body, the resistance value or voltage in

relation to the displacement is obtained at the output end.

Wiring
The pins of potentiometer on the left and right sides are connected to 3.3V and GND respectively, the

middle pin is connected to IO32.

Programming
Create a new file with following code, save and name it ssd1306_adc.py.
* if there is no ssd1306.py file in the device directory, please download ssd1306.py first. Refer to lesson 6

from machine import Pin,ADC

import machine

from micropython import const

import time

import ssd1306

import math

pscl = machine.Pin(5, machine.Pin.OUT)

psda = machine.Pin(4, machine.Pin.OUT)

i2c = machine.I2C(scl=pscl, sda=psda)

oled = ssd1306.SSD1306_I2C(128, 64, i2c)

def circle(x,y,r,color,fill=0):

35

if(fill==0):

for i in range(x-r,x+r+1):

oled.pixel(i,int(y-math.sqrt(r*r-(x-i)*(x-i))),color)

oled.pixel(i,int(y+math.sqrt(r*r-(x-i)*(x-i))),color)

for i in range(y-r,y+r+1):

oled.pixel(int(x-math.sqrt(r*r-(y-i)*(y-i))),i,color)

oled.pixel(int(x+math.sqrt(r*r-(y-i)*(y-i))),i,color)

else:

for i in range(x-r,x+r+1):

a=int(math.sqrt(r*r-(x-i)*(x-i)))

oled.vline(i,y-a,a*2,color)

for i in range(y-r,y+r+1):

a=int(math.sqrt(r*r-(y-i)*(y-i)))

oled.hline(x-a,i,a*2,color)

try:

while True:

adc = ADC(Pin(32)) #Create ADC object on ADC pin

adcValue=adc.read() #read value

adc.atten(ADC.ATTN_11DB) # set 11dB input attenuation (voltage range roughly 0.0v - 3.6v)

adc.width(ADC.WIDTH_12BIT) # set 12 bit return values, this is the default configuration

adcValue=adc.read() # read value using the newly configured attenuation and width

time.sleep_ms(10)

if(adc.read() == adcValue):

oled.fill(0)

circle(64,32,adcValue//64,1,1)

oled.show()

except KeyboardInterrupt:

pass

Grammar explanation
 adc.read()

Read ADC sampled data.

 adc.atten()

Set the amount of attenuation on the analog input. Different attenuation setting result in different

ranges of acceptance.

 adc.width()

Set the bit number of the value which ADC used or return.

 def circle()

Custom draw circle function that uses sqrt () function to calculate the radius of the circle

 math.sqrt(r)

Returns the square root of the number.

36

 pixel(x,y,c)

Draw the point at (x,y).

 hline(x,y,w,c)

Draw a horizontal line with the length w, starting at (x,y).

 vline(x,y,w,c)

Draw a vertical line with height w, starting at (x,y).

Experimental result
By rotating the potentiometer, the circle on the OLED display turns larger or smaller.

Lesson10: Pulse Sensor

The Pulse Sensor is a photoelectric reflex analog sensor for measuring pulse or heart rate. Touch it with

the finger, the sensor will output the relevant analog signal. The analog can be changed it by ADC to

digital one. Then the heart rate value can be obtained after these digital data are calculated.

In this experiment, it will show you how to use the analog output sensor.

Instructions
The pulse sensor has three pins, as the figure: the left pin is the s-pin of the signal output, the middle one

37

is the positive power supply VCC (3.3v ~5V), and the right one is the negative power supply GND.

Wiring
The s-pin is connected to IO32, the VCC pin is connected to 3V3, and the "-" pin is connected to GND.

Programming
Create a new file named pulse.py with following code.
* If there is no ssd1306.py file in the device directory, please refer to lesson 6 to download ssd1306.py first.

from machine import Pin,ADC

import machine

from micropython import const

import time

import ssd1306

import math

pscl = machine.Pin(5, machine.Pin.OUT)

psda = machine.Pin(4, machine.Pin.OUT)

i2c = machine.I2C(scl=pscl, sda=psda)

oled = ssd1306.SSD1306_I2C(128, 64, i2c)

counttime=0

try:

while True:

adc = ADC(Pin(32)) #Create ADC object on ADC pin

adcValue=adc.read() #read value, 0-4095 across voltage range 0.0v - 1.0v

adc.atten(ADC.ATTN_11DB) #set 11dB input attenuation (voltage range roughly 0.0v - 3.6v)

adc.width(ADC.WIDTH_10BIT) # set 10 bit return values

adcValue=adc.read() # read value using the newly configured attenuation and width

oled.line(counttime,40,counttime,adcValue-420,1) #Drew the heart rate

38

oled.show()

print(adcValue)

time.sleep_ms(1)

counttime+=1

if(counttime>127):

counttime=0

oled.fill(0) #Clear the screen

oled.show()

except KeyboardInterrupt:

pass

Grammar explanation
 counttime

Cache x coordinates (x less than 128)

 line(x,y,x1,y1,c)

Draw a Line, the (x,y) is the starting point coordinate, (x1,y1) is the ending point coordinate.

Experimental result
Touch the logo side with your finger, the screen will display your heart rate beat line. If contact instability

or vibration, measurement will be affected.

.

Lesson11: Ultrasonic Ranging

HC-SR04 is a non-contact distance measurement module, it provides a convenient and simple way to

detect the distance with a high degree of precision. This ultrasonic sensor detects objects which from

2cm to 450cm. The module includes ultrasonic transmitter, receiver and control circuit.

39

Ranging principle
The ultrasonic sensor works on the same principles as a radar system. It can convert electrical energy

into acoustic waves, the acoustic waves transmit in the air and come back to the receiver when hit the

detected object. The running time of the acoustic wave is detected. And distance to the target object is

calculated using the runtime of the acoustic waves.

Wiring to ESP32
The Ultrasonic sensor has four pins. The pin connection of the sensor and MakePython ESP32 is as the

below figure, “Trig” pin is connected to IO13, “Echo” pin is connected to IO21.

Library function download link
https://www.makerfabs.com/makepython-esp32-starter-kit.html
Just like the LCD, the sensor also needs special library to supports MakePyton ESP32 working. The

library can be obtained from the zip of the project (MakePython ESP32 lesson source code).

Copy the hcsr04.py file to the workSpace directory. Open the file by the uPyCraft IDE, and load it to the
MakePython ESP32.

https://www.makerfabs.com/makepython-esp32-starter-kit.html

40

Programming
Create a new file fill with the following codes, save and name it hc_sr04.py.
* if there is no ssd1306.py file in the device directory, please download ssd1306.py first. Refer to lesson 6

from hcsr04 import HCSR04

from machine import Pin,I2C

import ssd1306

i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000) #Init i2c

lcd=ssd1306.SSD1306_I2C(128,64,i2c)

sensor = HCSR04(trigger_pin=13, echo_pin=12,echo_timeout_us=1000000)

try:

while True:

distance = sensor.distance_cm()

print(distance)

lcd.fill(0)

lcd.text("Distance:",30,20)

lcd.text(str(distance),30,40)

lcd.show()

except KeyboardInterrupt:

pass

Grammar explanation:
 HCSR04()

Define a object and initialize the pin config of the ultrasonic sensor and timeout reminder.

 sensor.distance_cm()

Returns the detected distance.

Experimental result
Point the module at objects in different directions and the OLED displays the distance.

41

Lesson12: WiFi

MakePython ESP32 devices have built-in Wifi& Bluetooth, which enables to be accessed via Wifi or

home WiFi network connected. In this chapter, it will show how to access MakePython ESP32 with

WebREPL(read-evaluate -print-loop) and remote control. Users can remote load the program to

MakePython ESP32, without a USB cable connecting. Besides, this chapter also shows how to make the

MakePython be a web-server with socket communication.

A. WiFi connection

MakePython ESP32 can be a site to connect to WIFI when it works in STA Mode. Input help() in
MicroPython Shell/terminal, press enter key, and the printed message will prompt you how to set STA
mode.

Command for Connecting WIFI (STA)
You can input the following command one by one in the MicroPython Shell/terminal to connect WIFI.

Remember to modify the WiFi SSID and password.

>>> import network

>>> wlan=network.WLAN(network.STA_IF) #create access-point interface

>>> wlan.active(True) #activate the interface

>>> wlan.scan() #Scan access point

>>> wlan.connect('ap_name','password') #Connect to AP (local WIFI and password)

>>>wlan.isconnected() #Check that the workstation is connected to the AP

>>> wlan.ifconfig() #Get the IP/netmask/gw/DNS address of the interface

Grammar explanation
 wlan.active(True)

To enable the wlan interface.

42

 wlan.scan()

Scan the WIFI around and display.

 wlan.connect('ap_name','password')

Change 'ap_name' and 'password' to your WIFI SSID and password for connecting

 wlan.isconnected()

If the connection is successful, it will return True, otherwise return False. Use it to check the

WIFI is connecting.

 wlan.ifconfig()

Printed the information of the connected WIFI.

Result

Connect WIFI by programming
There is another way to set MakePython ESP32 connect WIFI, which is the most commonly used.

Instead of directly inputting commands, download the program file and execute it, so that MakePython

ESP32 can connect to WIFI. The program is available and can be obtain from here:

https://www.makerfabs.com/makepython-esp32-starter-kit.html

You can find the file connectwifi.py in the downloaded package, copy it to the workSpace directory.

Open the file by uPcraft IDE and change the WIFI SSID and PASSWORD as the follow picture.

After saving and loading to the board, the shell will show network config information. For connecting

WIFI next power on, press the Stop button, and set the connectWiFi.py to “Default Run”. Restart

MakePython ESP32, the shell will show network config information, WIFI connected!

https://www.makerfabs.com/makepython-esp32-starter-kit.html

43

B. WebREPL

WebREPL is a management platform which is develop by MicroPython to provide the wireless control. It

means the WebREPL can do the same as the uPycraft IDE such as loading file, it also has the same

terminal to input commands. But WebREPL is not enabled by default, it has to input some commands to

the board by uPycraft IDE in order to enable.

Input the following commands in the shell of the uPycraft IDE.

>>>import webrepl

>>>import webrepl_setup

The shell will show the following prompt, follow the prompt to operate. Enter: “E” (enable), then set the

password to enable WebREPL, which the password is about 4-9 characters (in the example that I use

“12345”), and input it again for confirming. The WebREPL is enabled successfully, follow the prompt to

input “y” to restart the board.

The following figure shows that the restart is successful.

*Note: after setting the password, the device will generate a webrepl_cfg.py file automatically to save your password. If you

didn't refresh it, you couldn't see it. You can try to reconnect the board, click twice, and the file will appear.

44

When the MakePython ESP32 restart, it has to follow the previous steps to connect WIFI again (if you

have set connectWiFi.py to Default Run and MakePython ESP32 have connected to WIFI, please ignore).

After connected WIFI, enter the following commands in the shell to start the WebREPL.
>>>import webrepl

>>>webrepl.start()

Then you will see the IP address: ws:// 192.168.1.109:8266

Make sure your PC connected the same WIFI with the MakePython ESP32. Open the following link with

the browser to enter WebREPL: http://micropython.org/webrepl/. Or click the below link to download

the local version of WebREPL : https://codeload.github.com/micropython/webrepl/zip/master.
Input the IP address to connect the board.

Enter the password you set and press “enter” key to connect to WebREPL.

There are two examples to show how to use and remote control MakePython ESP32 via WebREPL.

Example 1
Remember how to turn on an LED light? Now, wire the LED to MakePython ESP32 as the lesson 1, and

type the commands via WebREPL to control the LED On/Off.

Example 2:
Use the DHT11 module to measure the temperature and humidity.

http://micropython.org/webrepl/
https://link.jianshu.com/?t=https%3A%2F%2Fcodeload.github.com%2Fmicropython%2Fwebrepl%2Fzip%2Fmaster

45

Instructions
DHT11 digital temperature and humidity sensor contains calibrated digital signal output. It applies special

digital module acquisition technology and temperature and humidity sensing technology.

VCC: 3V~ 5.5v;

GND: Ground,

DATA: serial DATA pin;

Wiring
VCC is connected to 3.3v, and DATA is connected to IO14:

Programming
Create a new file, add the following code to the file. Save the file and name it DHT11.py.
from machine import Pin

import dht

import time

p14=Pin(14, Pin.IN)

d=dht.DHT11(p14)

try:

while True:

d.measure() #Measurement of temperature and humidity

t=d.temperature() #Read Celsius temperature

h=d.humidity() #Read relative humidity

print('Temperature=', t, 'C', 'Humidity=', h, '%')

time.sleep(1) #Delay of 1 second

except KeyboardInterrupt:

pass

46

Grammar explanation
 measure()

get the Measurement of temperature and humidity

 temperature()

Read the Celsius temperature

 humidity()

Read the relative humidity

Load the file by WebREPL
The files can be loaded through WebREPL and show the measurement of temperature and humidity in

WebREPL. In the WebREPL, click select file to choose the DHT11.py, and click Send to device:

After pressing the “send to device”, enter the below commands to print the files which has been stored in

the MakePython.

>>>import os

>>>os.listdir()

Input the following command to execute dht11.py. the result of the sensor measuring will be shown.

>>>exec(open(‘DHT11.py’).read(),globals())

Click “Ctrl+C” key to stop the script from running.

C. Socket communication
Socket communication is the basis of Internet communication. It is the basic operation unit of network

communication that supports TCP/IP protocol. To establish Socket communication requires a server side

and a client side. This chapter will use MakePython ESP32 as the server and the browser on PC as the

client side. Both sides will use TCP protocol to transmit and receive data from each other.

Example_1: LED Remote control by socket communication

In this example, the MakePython ESP32 with LED will be as a server, it can be controlled remotely with

any PC in the same WIFI:

47

Wiring
The LED wiring is the same as Lesson1.

Programming
Use the uPycraft IDE to loading the program to MakePython ESP32, the program can be obtained from

here. Before loading it, it is necessary to modify the WIFI SSID and password in the code to yours.

>>>>>>As the source code long, please download the source code at:

https://www.makerfabs.com/makepython-esp32-starter-kit.html, to check the Socket_LED.py<<<<<<

Grammar explanation
 web_page()

Create a simple web interface

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Create the socket object,AF_INET->IPV4,SOCK_STREAM->TCP

 s.bind(address)

Bindings for service roles

 s.listen(i)

Listen, for service roles, I: number of allowed connections, must be greater than 0

 s.accept()

Accept the connection for the service role

 conn.recv()

Receive data

 conn.send()

Send data

 conn.close()

Close data connection

Experimental result
Press “DownloadAndRun” to load the code, then press “Stop” and set the file to “Default Run”. Press the

RST button to restart the MakePython ESP32, the network config will print out of the shell:

Open the IP address with the browser which on the PC or phone. The browser will show the page as

follow, click the “ON” to control the LED on, click “OFF” to turn the LED off.

https://www.makerfabs.com/makepython-esp32-starter-kit.html

48

Example_2: Remote monitoring by socket communication

In addition to sending command and control LED lights, it can also transmit data. The DHT11 module is

still used in this experiment. With the Socket communication, the MakePython can be also a server to

detect environment and report to the Internet for sharing. In this example, the MakePython be a

temperature& humidity server, so any PC could assess it to get the related info.

Pragramming
>>>>>>As the source code long, please download the source code at:

https://www.makerfabs.com/makepython-esp32-starter-kit.html, to check the Socket_DHT11.py<<<<<<

Please refer to the previous examples for code comments and DHT11 wiring. It will not be repeated here.

Experimental result
Modify SSID and PASSWORD in the code and load it. Press the “Stop” button and set the file to Default

Run. Reset the MakePython ESP32, the information of network config will be printed out of the shell.

https://www.makerfabs.com/makepython-esp32-starter-kit.html

49

Input the IP (such as 192.168.1.129) to the browser on the PC or phone which connected the same WiFi,

the page will show the temperature and humidity measurement.

To get the latest measurement, please refresh the page.

*note: some browsers are not supported, please try another.

50

About us

Description
This MakePython ESP32 Kits includes the basic components and guidance for
MicroPython starters. With the 12 experiments in this guide, you will be able to make
simple electronic projects with MicroPython and ESP32, and will get the basic
knowledge& usage of IoT projects.

About Makerfabs
Makerfabs is an open hardware facilitator located in Shenzhen, China. We make open
hardware projects and provide the help of customers project prototyping& small batch
production, includes PCBA/ Molding/ OEM. Contact service@makerfabs.com for more
info.

Techsupport
For any troubles, please contact the support@makerfabs.com.

mailto:service@makerfabs.com
mailto:support@makerfabs.com

	Introduction
	What is MicroPython
	Product List
	MakePython ESP32 Pin figure

	CONTENT
	MicroPython Development Tool
	Installing uPyCraft IDE
	Get Start with uPyCraft IDE
	Establishing a communication with the board
	Creating new file on your board
	Uploading first program: Blinking LED

	MakePython Lessons
	Lesson1: LED Control
	Lesson2: Running LED
	Lesson3: Button
	Lesson4: PWM Control
	Lesson5: Voice Control
	Lesson6: OLED Display
	Lesson7: Temperature Monitor DS18B20
	Lesson8: Digital LED WS2812
	Lesson9: ADC
	Lesson10: Pulse Sensor
	Lesson11: Ultrasonic Ranging
	Lesson12: WiFi
	A.WiFi connection
	B.WebREPL
	C.Socket communication

	About us

