

SOC RTL8710 IOT WIFI

Zhongshan Boantong Communication Technology Co., Ltd

PRODUCT SPECIFICATION

RTLOO WiFi Module

Revision 1.1

Release Date : 2016/5/12

Disclaimer and Copyright notice

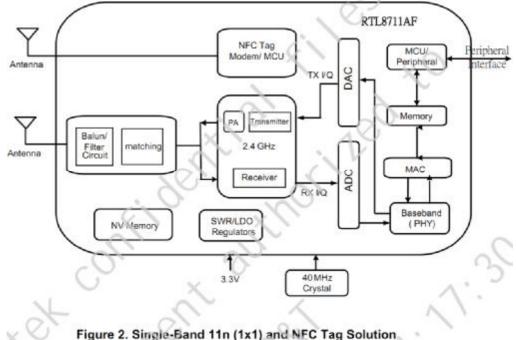
The information in this document, including the URL for reference, if there is any change, without prior notice.

The document is provided "as is" without any guarantee responsibility, including merchantability, suitable for any particular purpose or non-infringement guarantees, and any proposal, specification, or sample mentioned elsewhere any guarantees. The document has no any responsibility, including the infringement of any patent right by using information within this document produced. This document in this, by estoppel or otherwise, grant no any intellectual property licensing, whether express or implied license.

The wi-fi alliance marks shall be owned by The WIFI Alliance.

All brand names, trademarks and registered trademarks mentioned in the document are the property of their respective owners, and hereby declare.

RTL8710 IOT WIFI SOC


Contents

1.	PRODUCT PROFILE	4
2.	INTERFACE DEFINITION	7
3.	SHAPE AND SIZE	9
4.	FUNCTION DESCRIPTION	. 10
5.	RF PARAMETERS	. 12
6.	POWER CONSUMPTION	. 12
7.	TEMPERATURE DRIFT	.14
8.	MODULE INSTALLATION NOTES	15
9.	THE REFERENCE CIRCUIT	. 16

1. Product Profile

Realtek intelligent platform of the Internet **and** Realtek 8710 high performance wireless SOC bring the blessedness for mobile platform designers with maximum availability at the lowest cost, which provides endless possibilities for WiFi function embedded into other systems.

Itek 8710 can run independently as a complete and self-contained WiFi network solution

Realtek 8710 can run independently as a complete and self-contained WiFi network solution, which also be used to running as slave machine embark on other host MCU.Realtek 8710 with applications can directly start from an external flash memory as the only application processor of the equipment. Its built-in cache improves system performance and reduce memory requirements.

There is another situation that Realtek 8710 is responsible for wireless Internet access, undertaking the task of the WiFi adapter, which can be added to any design based on microcontroller just through simple connection with SPI/SDIO interface or I2C/UART port.

Realtek 8710 powerful processing and storage capacity on chip, make it can integrate sensors through the GPIO ports and other application with specific equipment, which realizes the lowest cost in preliminary development and the leastest occupation of system resources.

Realtek 8710 integrates highly on chip, including antenna switch ,balun , power management converter, so that it takes only a few external circuit,which minimizes the space when engineer designs PCB on the whole solution, including front-end module.

RTL8710 IOT WIFI SOC

1.1 Characteristics

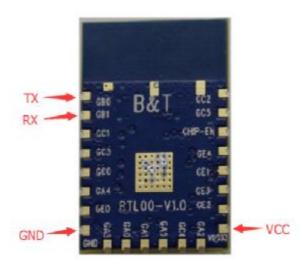
- 802.11 b/g/n , CMOS MAC , Baseband PHY
- Internal low power 32 位 CPU: as applicaton processor
- Internal TCP/IP protocol stack
- Internal TR Switch, balun, LNA, Power Amplifier and Matching Network
- Internal PLL、VLDO and Power Management Components
- MO、2x1 MIMO
- A-MPDU 、 A-MSDU aggregation and 0.4 s Guard Interval
- WiFi @ 2.4 GHz , Support WPA/WPA2 Security Mode
- Support STA/AP/STA+AP Module
- Support Smart Config function (include Android 和 iOS devices)
- HSPI 、UART、I2C、I2S、IR Remote Control、PWM、GPIO
- Deep Sleep Current 10 uA , Shutdown Current below 5 uA
- Wake up, connect and transfer data packets within 2 ms
- 802.11b modle+ 17 dBm Output Power
- Stand down Power below 1.0 mW (DTIM3)
- Operating Temperature Range : -20°C 85°C

IOT WIFI SOC RTL8710

1.2 Main Parameters

Table 1 Introduction of Main parameters of the Module

Category	Arguments	Statements		
	wireless standards	802.11 b/g/n		
Wireless Parameter	frequency range	2.4GHz-2.5GHz (2412M-2462M)		
	data interface	UART/HSPI/I2C/I2S/Ir Remote ContorI		
		GPIO		
	operating voltage	3.0~3.6V (suggested :3.3V)		
	operating current	averge : 80mA		
Hardware	operating temperature	-20°~85°		
Paramaters	Storage Temp	normal		
	Package Size	24mm*16mm*0.8mm		
	external interface	N/A		
	Wireless Network Mode	station/softAP/SoftAP+station		
	security mechanism	WPA/WPA2		
	encryption type	WEP/TKIP/AES		
	Upgrade Firmware	local uart burning / OTA / master download		
Coffman		burning		
Software	software development	Support user-defined server		
Parameters		secondary development with SDK		
	network protocols	IPv4, TCP/UDP/HTTP/FTP		
	User config	AT+ instruction set, Cloud Server, Android/iOS APP		


Table 1

SOC RTL8710 IOT WIFI

2. Interface definition

Figure 2 Definition of the Interface

Note: The default naming rules for GC2 means GPIOC second pin

IOT WIFI SOC RTL8710

Table 2 Function Definition of the RTL00 GPIO

NO	Pin name	Description	
1	GC2	UART0_RTS,SPI0_MOSI,I2S1_SD_TX,PCM1_OUT,PWM2,ETE2	
2	GC5	I2C1_SCL,SPI0_CS2,GPIO_INT	
3	CHIP_EN	Enable chip 1: enable chip;	
		0: shutdown chip	
4	GE4	JTAG_CLK , SPIO0_CS1	
5	GE1	JTAG_TDI,UART0_RTS,I2C2_SDA,SPI0_CLK,PCM0_CLK,PWM1,GPI0_INT	
6	GE3	JATG_TMS,UART0_IN,I2C3_SDA,SPI0_MISO,PCM0_IN,PWM3,WKDT3,GPI0_INT	
7	GE2	JATG_TDO,UART0_CTS,I2C3_SCL,SPI0_MOSI,PCM_OUT,PWM2, GPI0_INT,WKDT3	
8	VDD33	3.3V	
9	GA2	SD_CMD,UART2_RTS,SPI1_CLK	
10	GC4	I2C1_SDA,SPI0_CS1,I2S1_SD_RX, GPI0_INT	
11	GA5	SD_D1,WKDT0	
12	GA1	SD_D3,UART2_CTS,SPI1_MOSI,GPI0_INT	
13	GA0	SD_D2,UART2_IN,SPI1_MISO,GPI0_INT	
14	GA3	SD_CLK	
15	GND	GND	
16	GE0	JTAG_TRST,UART0_OUT,I2C2_SCL,SPI0_CS0,PCM0_SYNC,PWM0	
17	GA4	SD_D0 , UART2_OUT,SPI1_CS	
18	GC0	UARTO_IN,SPIO_CS0 , I2S1_WS,PCM1_SYNC,PWM0,ETE0	
19	GC3	UART0_OUT,SPI0_MISO,I2S1_MCK,PCM1_IN,PWM3,ETE3,GPI0_INT	
20	GC1	UART0_CTS,SPI0_CLK,I2S1_CLK,PCM1_CLK,PWM1,ETE1, GPIO_INT	
21	GB1	UART_LOG_IN,ETE1,WKDT0	
22	GB0	UART_LOG_OUT,ETE0	

3. Shape and size

RTL00 patch type module size 24mm * 16mm * 3mm (As shown in figure 3). The module uses 3 DBi PCB On-board antenna.

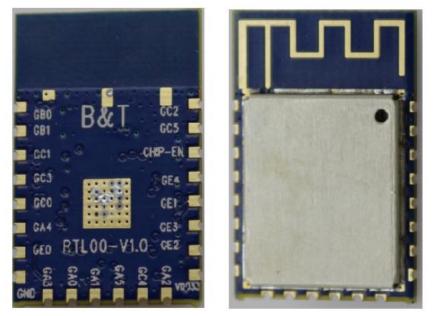
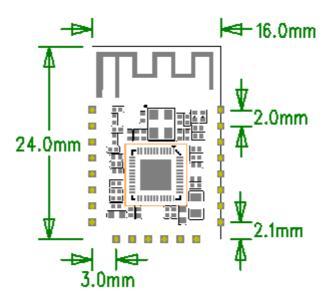



Figure 3 RTL00 module appearance

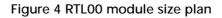


Table 5 RTL00 module size table

length	width	heigh	PAD szie	Pin distance
			(bottom)	
24mm	16mm	3 mm	0.9 mm x 1.0 mm	2.0mm

4. Function description

4.1 MCU

Realtek rtl8710af is a low power single chip.lt integrates a ARM-CM3 MCU, 802.11 n wireless network controller.lt also provides some peripherals with configurable GPIO.

4.2. storage description

4.2.1. built in SRAM and ROM

Realtek 8710 has internal memory controller including ROM and SRAM.MCU can access memory controller by iBus, dBus and AHB interface. These interfaces can access ROM or RAM unit as memory arbitrator determines the running order according to arrival sequence. Given the SRAM used by our Demo SDK i n current situation, the user can use the remaining SRAM size > 48 KB.

4.2.2. SPI Flash

Now the module internal integrate 1 MB of SPI Flash, which does not support external SPI Flash.

4.3. Maximum Ratings

Table 7 Maximum Ratings					
Ratings	condition value				
Storage Temperature		-40 to 125	°C		
maximum welding temperature		260	°C		
Voltage supply	IPC/JEDEC J-STD-020	+3.0 to +3.6	V		

4.4. Recommended Working Environment

Table 8 Recommended Working Environment

Working Environment	Name	Min	Тур	Max	units
Operating Temp		-20	20	85	°C
Voltage supply	VDD	3.0	3.3	3.6	V

4.5. Digital Port Characteristics

Table 9 Digital Port Characteristics					
port	Тур	Min	Тур	Max	units
Input logic level low	VIL	-0.3		0.25VDD	v
Input logic level high	ViH	0.75VDD		VDD+0.3	V
Input logic level low	Vol	N		0.1VDD	V
Input logic level high	Vон	0.8VDD		N	V

Note: If no special instructions, test condition is: VDD = 3.3 V, temperature = 20 °C.

IOT WIFI SOC RTL8710

5. **RF** Parameters

Parameters Typ		/p	units
Input Frequency	2412-2	2483.5	MHz
Input resistance	5	0	Ω
	802.11b	>17	dBm
	802.11g	>15	dBm
Output Power	802.11n(HT20)	>14	dBm
	802.11n(HT40)	>14	dBm
	11M	≤-76	dBm
Decemental data	54M	≤-65	dBm
Rx sensitivity	65M(HT20)	≤-64	dBm
	150M(HT40)	≤-61	dBm

6. Power Consumption

The following data is based on the 3.3 V power supply, around 25 ° C temperature, measured by the internal voltage regulator.

All measurements in the absence of SAW filter, completed in the antenna interface.

All emission data is based on 90% of the duty ratio, measured in continuous emission mode.

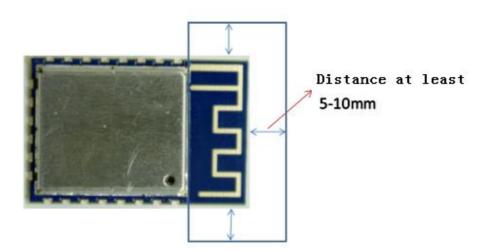
Model	Min	Туе	Max	unit
Transmit 802.11b, CCK 11Mbps, Pout=+17dBm		87		mA
Transmit 802.11g, OFDM 54Mbps, Pou⊤=+15dBm		180		mA
Transmit 802.11n(HT20), MCS7, Pout		168		mA

RTL8710 IOT WIFI SOC =+14dBm Transmit 802.11n(HT40), MCS7, POUT 148 mA =+14dBm Receive 802.11b, packet length 1024 bytes, 68 mA -76dBm Receive 802.11g, packet length 1024 68 mΑ bytes, -65dBm Receive 802.11n, packet length 1024 68 mΑ bytes, -64dBm Modem-Sleep^① 15 mΑ Light-Sleep2 0.9 mΑ 10 uA Deep-Sleep3 30 mΑ Normal stand down

Note 1: Modem - Sleep is applied to the CPU in the continuous working condition Such as PWM or I2S application, etc.With keeping the WiFi connection, if there is no data transfer, close the WiFi Modem circuit to save electricity according to 802.11 standard (such as U - APSD). For example, When DTIM3, 300 ms sleep time includes awaking time 3 ms to receive AP Beacon packets and so on, the overall average current is about 15 ma.

Note 2:Light - Sleep is applied to the CPU which suspend the application of such as WiFi switch.With keeping the WiFi connection, if there is no data transfer, close the WiFi Modem circuit to save electricity according to 802.11 standard (such as U - APSD). For example, When DTIM3, 300 ms sleep time includes awaking time 3 ms to receive AP Beacon packets and so on, the overall average current is about 0.9 ma.

Note 3:Deep-Sleep without keeping WiFi connection, is applied to the application which sends a packet with long time interval , such as measurement temperature sensor works once every 100 seconds. For example, 300 ms sleep time including awaking time 0.3~1s to connect AP , the overall average current can be far less than 1 mA.

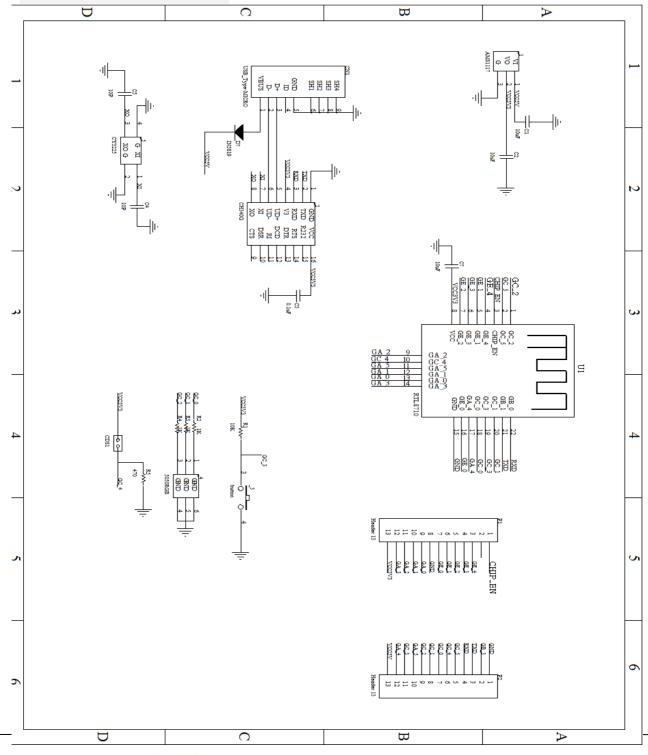

7. Temperature Drift

Temperature Drift T_s Max $- T_L$	Max 3°C/sec
preheating	
T _s Min.	150℃
Т _ѕ Тур.	175℃
T _s Max.	200°C
т	60~180 sec
Drift up (T _L to T _P)	Max 3°C/sec
Lasting time / Temp (T_L) / time (T_L)	217°C/60~150 sec
Temp peak (T _P)	Max Temp 260°C, lasting 10 sec
target Temp peak (T _P target)	260°C +0/-5℃
Actual (t_P) 5°C lasting time	20~40 sec
Drift down	Max 6°C/sec
From 25°C to Temp peak time (t)	Max 8 minutes

 $\mathbf{R}X^{*}$

8. Module Installation notes

Antenna radiation space is very important, the environment good or bad will affect the transmission distance.Metal or other such as motors, cameras, speakers such as components will directly affect the performance of the antenna, which is equivalent to add a layer mask.RTL00 using on-board PCB antenna, the module has surrounding environment requirements.Are as follows: as shown in figure 5, don't put influential components to antenna surrounding within 5-10 mm;As shown in figure 6, don't place influential components t below the antenna within 3 to 5 mm, if there is need to lay the ground that clear treatment is vital.Under modules ,it has no high frequency signal lines and components as far as possible .



RTL8710 IOT WIFI SOC

9. The Reference Circuit

