RPI Pico: Controlling an LED
in MicroPython

- Figure 4-4: The finished circuit, with an LED and a resistor

Controlling an external LED in MicroPython is no different to controlling your Pico's internal
LED: only the pin number changes. If you closed Thonny, reopen it and load your Blink.py
program from earlier in the chapter. Find the line:

led_onboard = machine.Pin(25, machine.Pin.OUT)

Edit the pin number, changing it from 25 - the pin connected to your Pico's internal LED - to
15, the pin to which you connected the external LED. Also edit the name you created: you're
not using the on-board LED any more, so have it say 1ed_external instead. You'll also have to
change the name elsewhere in the program, until it looks like this:

import machine

import utime

led_external = machine.Pin(15, machine.Pin.OUT)

while True:
led_external.toggle()
utime.sleep(5)

NAMING CONVENTIONS

You don't really need to change the name in the program: it
would run just the same if you'd left it at 1ed_onboard, as it's
only the pin number which truly matters. When you come back

to the program later, though, it would be very confusing to have

an object named led_onboard which lights up an external LED

— so try to get into the habit of making sure your names match

their purpose!

52 GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

GET STARTED WITH MICROPYTHON ON RASPBERRY PIPICO

CHALLENGE: MULTIPLE LEDS

RPI Pico: Reading an Button

L] []
external LEDs at the same time? Can you write a program which I n M I C ro h O n
lights up the on-board LED when the external LED is switched
off, and vice versa? Can you extend the circuit to include more

than one external LED? Remember, you'll need a current-limiting

resistor for every LED you use!

Inputs: reading a button

Outputs like LEDs are one thing, but the ‘input/output’ part of ‘GPIO" means you can use pins as
inputs too. For this project, you'll need a breadboard, male-to-male jumper wires, and a push-
button switch. If you don't have a breadboard, you can use female-to-female (F2F) jumper wires,
but the button will be much harder to press without accidentally breaking the circuit.

Remove any other components from your breadboard except your Pico, and begin by adding
the push-button switch. If your push-button has only two legs, make sure they're in different-
numbered rows on the breadboard somewhere below your Pico. If it has four legs, turn it so the
sides the legs come from are along the breadboard’s rows and the flat leg-free sides are at the
top and bottom before pushing it home so it straddles the centre divide of the breadboard.

Connect the positive power rail of your breadboard to your Pico’s 3V3 pin, and from there to

one of the legs of the switch; then connect the other leg to pin GP14 on your Pico - it's the one

just above the pin you used for the LED project, and should be in row 19 of your breadboard. ; ani]
o i
If you're using push-button with four legs, your circuit will only work if you use the correct pair

LAU ST BA S F LY

of legs: the legs are connected in pairs, so you need to either use the two legs on the same side

or (as seen in Figure 4-5) diagonally opposite legs.

4 WEQES EEEES sEEEE EESSQ EEESS ssseE

« Figure 4-5: Wiring a four-leg push-button switch to GP14

Chapter 4 Physical computing with Raspberry Pi Pico 53

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

input on GP14. Because the input is using a pull-down resistor, this value will be 0 - letting you
know the button isn't pushed.

Hold down the button with your finger, and press the Run icon again. This time, you'll see the
value 1 printed to the Shell: pushing the button has completed the circuit and changed the value
read from the pin.

To read the button continuously, you'll need to add a loop to your program. Edit the program so
it reads as below:

import machine

import utime
button = machine.Pin(14, machine.Pin.IN, machine.Pin.PULL_DOWN)

while True:
if button.value() == 1:
print("You pressed the button!")
utime.sleep(2)

Click the Run button again. This time, nothing will happen until you press the button; when you
do, you'll see a message printed to the Shell area. The delay, meanwhile, is important: remember,
your Pico runs a lot faster than you can read, and without the delay even a brief press of the
button can print hundreds of messages to the Shell!

You'll see the message print every time you press the button. If you hold the button down for
longer than the two-second delay, it will print the message every two seconds until you let go of
the button.

Inputs and outputs: putting it all together

Most circuits have more than one component, which is why your Pico has so many GPIO pins.
It's time to put everything you've learned together to build a more complex circuit: a device which
switches an LED on and off with a button.

 Figure 4-6: The finished circuit, with both a button and an LED

Chapter 4 Physical computing with Raspberry Pi Pico

55

ico: Controlling an LED
With a Button

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

A simple traffic light —

RPI Pico: Basic 3-li ~
Start by building a simple traffic light system, as shown in Figure 5-1. Take your red LED and . co Ba S I c 3 - I I h t ‘ . ’
insert it into the breadboard so it straddles the centre divide. Use one of the 330 Q resistors, and ‘

a jumper wire if you need to make a longer connection, to connect the longer leg - the anode ‘ ©

- of the LED to the pin at the bottom-left of your Pico as seen from the top with the micro USB 1

cable uppermost, GP15. If you're using a numbered breadboard and have your Pico inserted at T ff. = ‘ ’ ’
the very top, this will be breadboard row 20. ra I C I t ste m
"y top, —_

i R

~ Figure 5-1: A basic three-light traffic light system

WARNING

Always remember that an LED needs a current-limiting resistor

before it can be connected to your Pico. If you connect an LED

without a current-limiting resistor in place, the best outcome is

the LED will burn out and no longer work; the worst outcome is

it could do the same to your Pico.

Take a jumper wire and connect the shorter leg - the cathode - of the red LED to your

EEE]
-
Trrtrw
EEEE RS
mmmmn
EEEEEY
mmma
s
AESEs
EEEAS
EEEES
m====
m====6
"mass
e

f9hii

breadboard'’s ground rail. Take another, and connect the ground rail to one of your Pico's ground

(GND) pins - in Figure 5-1, we've used the ground pin on row three of the breadboard.

You've now got one LED connected to your Pico, but a real traffic light has at least two more [.
for a total of three: a red light to tell the traffic to stop, an amber or yellow light to tell the traffic
the light is about to change, and a green LED to tell the traffic it can go again.

Take your amber or yellow LED and wire it to your Pico in the same way as the red LED, = SmEE=m m===8 sEEER mEmaa
-

i -
making sure the shorter leg is the one connecting to the ground rail of the breadboard and that ; f L d - PR TR ey §

you've got the 330 Q resistor in place to protect it. This time, though, wire the longer leg - via the
resistor — to the pin next to the one to which you wired the red LED, GP14.

Finally, take the green LED and wire it up the same way again — remembering the 330 Q
resistor — to pin GP13. This isn't the pin right next to pin GP14, though - that pin is a ground
(GND) pin, which you can see if you look closely at your Pico: the ground pins all have a square

shape to their pads, while the other pins are round.

Chapter 5 Traffic light controller 59

GET STARTED WITH MICROPYTHON ON RASPBERRY PIPICO

utime.sleep(5)
led_green.value(@)
led_amber.value(1)
utime.sleep(5)
led_amber.value(0)

Click the Run icon and save your program to your Pico as Traffic_Lights.py. Watch the LEDs:
first the red LED will light up, telling the traffic to stop; next, the amber LED will come on to warn
drivers the lights are about to change; next both LEDs switch off and the green LED comes on
to let traffic know it can pass; then the green LED goes off and the amber one comes on to
warn drivers the lights are about to change again; finally, the amber LED goes off — and the loop
restarts from the beginning, with the red LED coming on.

The pattern will loop until you press the Stop button, because it forms an infinite loop. It's
based on the traffic light pattern used in real-world traffic control systems in the UK and Ireland,
but sped up - giving cars just five seconds to pass through the lights wouldn't let the traffic flow
very freely!

Real traffic lights aren't just there for road vehicles, though: they are also there to protect
pedestrians, giving them an opportunity to cross a busy road safely. In the UK, the most common
type of these lights are known as pedestrian-operated user-friendly intelligent crossings or
puffin crossings.

To turn your traffic lights into a puffin crossing, you'll need two things: a push-button switch,
so the pedestrian can ask the lights to let them cross the road; and a buzzer, so the pedestrian
knows when it's their turn to cross. Wire those into your breadboard as in Figure 5-2, with the
switch wired to pin GP16 and the 3V3 rail of your breadboard, and the buzzer wired to pin GP12
and the ground rail of your breadboard.

 Figure 5-2: A puffin crossing traffic light system
If you run your program again, you'll find the button and buzzer do nothing. That's because you

haven't yet told your program how to use them. In Thonny, go back to the lines where you set up

your LEDs and add the following two new lines below:

Chapter 5 Traffic light controller 61

RPI Pico: A Puffin Crossing
Traffic Light System

EERE R
PEFFFESEE R SRR AR

NG,
=

an ge 61 = quer!’abs

74

print(“"Your reaction time was " + str(timer_reaction) +

milliseconds!")

led.value(1)

utime.sleep(urandom.uniform(5, 10))

led.value(0)

timer_start = utime.ticks_ms()
button.irq(trigger=machine.Pin.IRQ_RISING, handler=button_handler)

Click the Run button again, wait for the LED to go out, and push the button. This time, instead
of a report on the pin which triggered the interrupt, you'll see a line telling you how quickly you
pushed the button — a measurement of your reaction time. Click the Run button again and see
if you can push the button more quickly this time - in this game, you're trying for as low a score

as possible!

CHALLENGE: CUSTOMISATION

Can you tweak your game so that the LED stays lit for a longer time?
What about staying lit for a shorter time? Can you personalise the
message that prints to the Shell area, and add a second message

congratulating the player?

A two-player game

Single-player games are fun, but getting your friends involved is even better. You can start by

inviting them to play your game and comparing your high - or, rather, low — scores to see who

has the quickest reaction time. Then, you can modify your game to let you go head-to-head!
Start by adding a second button to your circuit. Wire it up the same as the first button, with

one leg going to the power rail of your breadboard but with the other going to pin GP16 - the pin

across the board from GP14 where the LED is connected, at the opposite corner of your Pico.

SEEEES SESEES SESEES SEEES SEEEE SESEES SEESEE SEEEE EEEES lllll‘
_ mEmEs sEEEE SESEE EEEES SEEEN EEEAN EEEE SEANE EEEEE mAEmA

- Figure 6-2: The circuit for a two-player reaction game

GET STARTED WITH MICROPYTHON ON RASPBERRY PIPICO

RPI Pico: Two-player

Reaction Game

R R RS

AUB oSG uy

84

Start by wiring an LED, of any colour, to your Pico as shown in Figure 7-2. The longer leg, the
anode, needs to connect to pin GP15 via a 330 Q resistor — remember that without this resistor
in place to limit the amount of current passing through the LED, you can damage both the LED
and your Pico. The shorter leg, the cathode, needs to be wired to one of your Pico's ground pins
~ use your breadboard'’s ground rail and two male-to-male (M2M) jumper wires for this.

 Figure 7-2: Adding an LED to the burglar alarm

This time, you're going to handle delays in your program rather than relying on the delay built
into the PIR sensor. Go to the top of your program and, just below the line import machine,
add the following:

import utime
Next, add a new line just below where you set up the PIR sensor’s pin:

led = machine.Pin(15, machine.Pin.OUT)
That's enough to configure the LED, but you'll need to make it light up. Add the following new
line to your interrupt handler function — remembering that, like all the lines in the function, it will
need to be indented by four spaces so MicroPython knows it's part of the nested code:

for i in range(50):
Press ENTER at the end of this line and you'll notice Thonny has automatically added another
four spaces to make an eight-space indentation. That's because you've just created a finite loop,
one which will run 50 times. The letter i represents an increment, a value which goes up each
time the loop runs, and which is populated by the instruction range(50).

Give your new loop something to do, remembering that these lines will need to be indented by
eight spaces — which Thonny will have done automatically — as they form both part of the loop

you just opened and the interrupt handler function:

led.toggle()

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

RPI Pico: Adding an LED
to the Burglar Alarm

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

RPI Pico: Wiring a 2-wire

Piezoelectric Buzzer

@EsEs smsss messs sssss sssss sesss ssess seses ssess
SEsEs wEsuS SsESs NEEEN BEsES SESES EEEes seess sEsEs

« Figure 7-3: Wiring a two-wire piezoelectric buzzer

If your buzzer has three pins, connect the leg marked with a minus symbol (-) or the letters
GND to the ground rail of your breadboard, the pin marked with S or SIGNAL to pin GP14 on your
Pico, and the remaining leg — which is usually the middle leg - to the 3V3 pin on your Pico.

If you run your program now, nothing will change: the buzzer will only make a sound when
it receives power from your Pico’s GPIO pins. Go back to the top of your program and set the

buzzer up just below where you set the LED up:
buzzer = machine.Pin(14, machine.Pin.OUT)

Next, change your interrupt handler to add a new line below led.toggle() — remembering that,
as it's part of both the loop and the handler function, it will need to be indented by eight spaces:

buzzer.toggle()

Your program will now look like this: . " o ammmm mmmma mmmms =
1 i - mEaaas mmass e
import machine
import utime

sensor_pir = machine.Pin(28, machine.Pin.IN, machine.Pin.PULL_DOWN)
led = machine.Pin(15, machine.Pin.OUT)
buzzer = machine.Pin(14, machine.Pin.OUT)

def pir_handler(pin):
print("ALARM! Motion detected!")
for i in range(50):
led.toggle()
buzzer.toggle()
utime.sleep_ms(100)

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

Chapter 7 Burglar alarm 87

90

RPI Pico: Adding 2 PIR +
1 LED + 1 Buzzer

~ Figure 7-4: Adding a second PIR sensor to cover another room

sensor_pir2.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

Remember that you can have multiple interrupts with a single handler, so there’s no need to
change that part of your program.

Click Run, and wave your hand over the first PIR sensor: you'll see the alert message, the LED
flash, and the buzzer sound as normal. Wait for them to finish, then wave your hand over the
second PIR sensor: you'll see your burglar alarm respond in exactly the same way.

To make your alarm really smart, you can customise the message depending on which pin
was responsible for the interrupt — and it works exactly the same way as in the two-player
reaction game you wrote earlier.

Go back to your interrupt handler and modify it so it looks like:

def pir_handler(pin):
if pin is sensor_pir:
print("ALARM! Motion detected in bedroom!")

elif pin is sensor_pir2:

print(“ALARM! Motion detected in living room!")
for i in range(50):

led.toggle()

buzzer.toggle()

utime.sleep_ms(100)

Just as in the reaction game project in Chapter 6, this code uses the fact that an interrupt
reports which pin it was triggered by: if the PIR sensor attached to pin GP28 is responsible, it will
print one message; if it was the PIR sensor attached to pin GP22, it will print another.

Your finished program will look like this:

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

96

to it. That's because a 10 kQ resistor isn't strong enough to drop the 3V3 pin’s output to 0V. You
could look for a bigger potentiometer with a higher maximum resistance, or you could simply
wire your existing potentiometer up as a voltage divider.

A potentiometer as a voltage divider

The unused pin on your potentiometer isn't there for show: adding a connection to that pin to
your circuit completely changes how the potentiometer works. Click the Stop icon to stop your
program, and grab two male-to-male (M2M) jumper wires. Use one to connect the unused pin of
your potentiometer to your breadboard’s ground rail as shown in Figure 8-3. Take the other and
connect the ground rail to a GND pin on your Pico.

HR e

TR

L SEESES ESEEES SESESES SEEES SESEES SEEEE EEEEE SEEES EEEES llllll
4 USEEE EEEEE SEEEE EEEEN BAEESE BEESN EEEAE SEEEE BEEAE EEmAn

- Figure 8-3: Wiring the potentiometer as a voltage divider

Click the Run icon to restart your program. Turn the potentiometer knob again, all the way one
direction then all the way the other. Watch the values that are printed to the Shell area: unlike
before, they're now going from near-zero to nearly a full 65,535 - but why?

Adding the ground connection to the other end of the potentiometer’s conductive strip has
created a voltage divider: whereas before the potentiometer was simply acting as a resistor
between the 3V3 pin and the analogue input pin, it's now dividing the voltage between the 3.3V
output by the 3V3 pin and the 0 V of the GND pin. Turn the knob fully one direction, you'll get 100
percent of the 3.3V; turn it fully the other way, 0 percent.

ZERO'S THE HARDEST NUMBER
. If you can't get your Pico's analogue input to read exactly zero or
- exactly 65,535, don't worry — you haven't done anything wrong!
Al electronic components are built with a tolerance, which means
any claimed value isn't going to be precise. In the case of the
potentiometer, it will likely never reach exactly 0 or 100 percent of

its input — but it will get you very close!

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

Pl PicO: A Potentiometer

as a Voltage Divider

- = - =
W mEEER smEEEE EmEEAER EEEEa

GET STARTED WITH MICROPYTHON ON RASPBERRY PIPICO

[PwM_AO]§ GPO_]
[Pwv_B[O] | GP1 JF3

T s
[PWM_A[II] GP2 R
VT I 5
[PWM ALY GP4 RO
[PWM_B[2] | GP5 R¥J

T
EENE I 5
[PWM_B[3]§ GP7 RTJ
[PwM_A4I] GP8 R
[PWM_B[4]§ GPo [P

ETI 13
[PWM_ASI} GP10_ [T
[PWM_B[SI | GP11_ R
[PWM_AGI} GP12 [T
[PwWM_Bl6]§ GP13 Ji¥J

ISR 1@
[Pwm_A7I] P14 ED)
[Pwv_B[7I] P15 Fl)

;.a.

m
® ® o 9 8 ® ® o » ® s " » » » o 0

BOOTSEL

(RS

Raspberry Pi Pico ©2020

~ Figure 8-4: The pulse-width modulation pins

If that sounds confusing, don’t worry: all it means is that you need to make sure you keep
track of the PWM slices and outputs you're using, making sure to only connect to pins with a
letter and number combination you haven't already used. If you're using PWM_A[0] on pin GPO
and PWM_BI0] on pin GP1, things will work fine, and will continue to work if you add PWM_A[1]
on pin GP2; if you try to use the PWM channel on pin GPO and pin GP16, though, you'd run into

problems as they're both connected to PWM_A[0].

40 IR

3 IS

Ef oD |

37

£ 3v3(ouT) |

35
E78 GP28 § PWM_Al6]|
] oND | AGND |
A GP27 | PWMB[S] |
Eill GP26 § PWM_A[5]|
30

PN GP22 § PWM_AI3]]
i onD |

el P21 § PWMB[]|
I § GP20 J PWM_A] |
oy GP19J PWMB[1] |
P78 P13 § PWM A[]]
ex onD |

8 GP17_§ PWMLBI0]|
il GP16 J PWM_A[D]]

g =

~ Figure 8-5: Adding an LED

Chapter & Temperature gauge

101

RPI Pico:

(

¢

!
|
il

USSP 3 AAIUPRFIALI U

{

Fading an LED
with PWM

: =
amamsEan

f9hili

abcde

Tips DemoonPage 101 - Makerfabs

118

These have to connect to specific pins on the Pico. There are a few choices; take a look at the
pinout diagram for the options (Figure 10-1). There are two 12C buses (12C0 and 12C1), and you
can use either or both. In our example, we'll use 12C0 - with GPO for SDA, and GP1 for SCL.

To demonstrate the protocols, we'll use a SerLCD module from SparkFun. This has the
advantage that it has both 12C and SPI interfaces, so we can see the differences between the
two methods with the same hardware.

This LCD can display two lines, each with up to 16 characters. It's a useful device for
outputting bits of information about our system. Let's take a look at how to use it.

Wiring 12C is just a case of connecting the SDA pin on the Pico with the SDA pin on the LCD
and the same for the SCL. Because of the way 12C handles communication, there also needs to
be a resistor connecting SDA to 3.3 V and SCL to 3.3 V. Typically these are about 4.7 kQ. However,
with our device, these resistors are already included, so we don't need to add any extra ones.

3.3V Logic Only

- Figure 10-2: Wiring up a SerLCD module for 12C

With this wired up (see Figure 10-2), displaying information on the screen is as simple as:

import machine

sda=machine.Pin(0)

scl=machine.Pin(1)

i2c=machine.I2C(0,sda=sda, scl=scl, freq=400000)
i2c.writeto(114, "\x7C")

i2c.writeto(114, "\x2D')

i2c.writeto(114, "hello world")

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

RPI Pico: Wiringupa
SerLCD Moule for 12C

EEEEs eEpEEE EHBEER
e s es EssEs = =

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

CS line to enable an SPI peripheral and pull it low to disable it. To confuse things slightly, this
particular device doesn't have CS, but /CS which stands for NOT CS - in other words, it's the
opposite of CS, so you bring it low to enable the LCD and high to disable it. You could connect the
CSto a GPIO pin and toggle this on and off to enable and disable the display, but since we only

have one device, we can simply connect it to ground to keep it enabled (Figure 10-3)

So, with the SerLCD's power lines connected to VBUS and GND, we just need to connect its St
SDO to Pico’s MISO (GP4 / SPI0 RX), SDI to MOSI (GP3 / SPI0 TX), SCK to SCLK (GP2 / SPIO g e r o r

SCK), and /CS to GND.

3.3V Logic Only

~ Figure 10-3: Wiring up a SerLCD module for SPI

SPI TERMINOLOGY n

SPI requires four connections: one that takes data from the master

W device to the slave device, another that takes data in the opposite

direction, plus power and ground. Two data wires mean that data can

A =) travel in both directions at the same time. These are usually called
Master Out Slave In (MOSI) and Master In Slave Out (MISO). However,
you will come across them with different names. If you look at the |
Raspberry Pi Pico pinout (Appendix B), they're referred to as SPI TX .- A
(Transmit) and SPI RX (Receive). This is because Pico can be either o LR i'lH! .
LR R
amaster or slave device, so whether these connections are MOSI or
MISO depends on the current function of Pico. On the LCD we're using,

they're labelled SDI (Serial Data In) and SDO (Serial Data Out).

Chapter 10 Digital communication protocols: 12C and SPI 121

GET STARTED WITH MICROPYTHON ON RASPEERRY PIPICO

sml = StateMachine(1, led_quarter_brightness, freq=10000, set_base=Pin(25))

The parameters here are:
u The state machine number
u The PIO program to load
u The frequency (which must be between 2000 and 125000000)

m The GPIO pin that the state machine manipulates

There are some additional parameters that you'll see in other programs that we don't need here.
Once you've created your state machine, you can start and stop it using the active method
with 1 (to start) or O (to stop). In our loop, we cycle through the three different state machines.

A real example
The previous example was a little contrived, so let’s take a look at a way of using PIO with a real
example. WS2812B LEDs (sometimes known as NeoPixels) are a type of light that contains
three LEDs (one red, one green, and one blue) and a small microcontroller. They're controlled by a
single data wire with a timing-dependent protocol that's hard to bit-bang.

Wiring your LED strip is simple, as shown in Figure C-1. Depending on the manufacturer of
your LED strip, you may have the wires already connected, you may have a socket that you can

push header wires in, or you may need to solder them on yourself.

~ Figure C-1: Connecting an LED strip

One thing you need to be aware of is the potential current draw. While you can add an almost
endless series of NeoPixels to your Pico, there's a limit to how much power you can get out

Appendix C Programmable 10 133

RPI Pico: Connecting an

LED Strip

mmmea
Eas=as

